数极客首页

广告系统设计:个性化推荐

上一篇中,二哈讲述了广告业务的流量提升,在讲述提升广告点击率的时候,提到了迎合用户喜好的概念,本篇就来说说如何迎合用户喜好吧。

广告系统设计:个性化推荐

用户和广告交互的全过程可以表述为:看见广告—对素材产生兴趣—点击广告—对内容产生兴趣—消费广告。

注意,这里的广告泛指一切商业化行为,包括且不限于广告、直播、游戏、增值服务、会员业务等。

所以个性化推荐的重点为:

  • 让用户看到喜欢的素材(核心指标为CTR,点击率)
  • 点击后看见喜欢的内容(核心指标为后续转化率,比如会员则是付费率,应用广告则是安装率)
  • 素材和内容之间保持相关性(核心指标为跳出率)

1、让用户看到喜欢的素材

虽然在上一篇中说到素材优化的点(诱惑性),但是每个人的兴趣点实际是千差万别的。就好比“吃鸡”这个词语,对于20岁的人和40岁的人来说,意义完全不一样。下面来详细介绍一下几种实操方法:

1.1、对比测试法

1.1.1、对于相同的一群用户,随机分为两个组别,一个组投放A素材,另一个组投放B素材,如果CTR(A)>CTR(B),那么A要优于B,以后是不是投放A就好啦?但是投着投着发现,点击率慢慢下降,这是为什么呢?因为长期不变的素材对于用户的吸引力变弱了(用户已经有了清楚的预期),该换新的素材了!

1.1.2、由编辑不断产出新的素材,同时上线多轮素材测试投放,选出最好的持续投放几天,再进行新的测试。慢慢的点击率保持稳定上升了,但是上升幅度慢慢变小,评估效果工作量也越来越大,这下该怎么办呢?其实交给电脑就好了。

1.1.3、素材优化系统开始搭建,包含素材库、统计服务、投放服务等。由编辑手动录入大量素材,配置好对应的广告位,初始时由服务端将大量素材平均分配给随机用户,一段时间后计算每个素材的CTR,进行权重更新,CTR高的素材占更大的权重,CTR低的素材占更小的权重,另外留一部分权重给新录入的素材,引入时间衰减函数,若长时间表现不好的素材,直接淘汰掉,编辑同学参照CTR最高的那些素材进行新的设计。

经过以上三步,CTR应该能提升100%以上(工作经验),但你会发现,很快就会到达天花板,因为这里有两个因素的问题:1、每个人被当做相同的个体;2、设计素材的能力。

那么怎么才能继续提升呢?进入下一个方法。

1.2、协同过滤法

设计素材的能力短期内无法提升的话,我只要把每个人当做不同个体来衡量就好啦,那么点击率就变成了CTR1、CTR2、CTR3……这里就需要开始引入协同过滤的概念了。

1.2.1、协同过滤(主要有两个方向):

基于物品(内容)推荐:比如你喜欢A,通过A的特征找到B和A很相似,C和A不相似,那么更倾向于给你推荐B

基于用户推荐:比如你喜欢A,他也喜欢A,通过你和他的共同特征(喜欢A),认为你和他相似,如果他还喜欢B,那么更倾向于给你推荐B

1.2.2、操作步骤为:选取推荐方法——对用户/物品打标签——计算相似度——产生推荐结果——测试结果修正算法

  • 选取推荐方法:主要看数据是否丰富,如果用户特征丰富,那么选择基于用户,反之选择基于物品;
  • 对用户/物品打标签:用户标签在用户画像的文章中有提到,想了解的可以看一下,物品的话以广告为例,可以分为类型(游戏、体育、财经)、载体(图片、文字)、内容(人、动物)、风格(可爱、成熟)等等,以及分配各标签的权重;
  • 计算相似度:对每个用户/物品进行向量化,每个标签就是一维向量,最终计算的其实就是n维向量的相似度,常用方法有余弦相似度、欧式距离等(这里不详述);
  • 产生推荐结果:C用户喜欢A,且A和B相似(以基于物品为例)
  • 测试结果修正算法:将B投放给C用户,若效果不理想,主要考虑优化标签和权重。

经过以上两步,CTR应该能再提升30%以上(工作经验),主要限制提升率的因素在于标签库的丰富程度,实际工作中,尤其是广告业务,能拿到的有效标签很少,所以推荐出来的结果不尽如人意。

那么,试着提升设计素材的能力呢?

1.3、AI生成法(二哈没有实操经验,只是讨论)

最简单提升能力的方法就是换更厉害的设计!2333333……如果能换的话,请略过这个篇章。

不知道大家有没有了解过阿里的鲁班或者腾讯的Dreamwriter,他们都是通过机器学习的方式来达到自动生产内容的工具。核心流程如下:

  • 拆解图片/文本,比如图片可拆解成:背景、框架、色彩、主产品、次要产品、标题、描述等等;而文本直接可以通过切词完成。
  • 引入大量图片/文本作为元素集合,为训练做准备
  • 通过机器学习的方式,让电脑知道A和B在一起是可以的,B和C在一起是不行的(学习规律)
  • 生成大量内容,投放测试(其实类似于海量的对比测试+协同过滤的方式)

这里的核心点在于:

  • 有海量的历史数据作为训练样本;
  • 有足够专业的设计能力去干预;
  • 有足够的投放样本回收结果

2、点击后看见喜欢的内容/素材和内容之间保持相关性

这两点其实可以一起说,因为简单说来就是:1-转化率=跳出率,通过点击广告素材看到内容的用户,要不就是转化了,要不就是跳出了,无非这两种出路(第三种可能是产品有问题直接挂了,这里不谈)。

那么怎么提升呢?其实也就是和CTR优化一样,对比测试、协同过滤、AI生成,因为素材,也是内容的一种。

但一般情况下,素材和内容应该是绑定的,也会有多个素材对应一个内容的情况,但一般不会有多个内容对应一个素材的情况,所以大家经常看见,同一个业务,会在产品上有多个广告入口,而同一个广告入口对应多个业务,则会相互瓜分流量。

也就是说,在绑定的前提下,只要优化好前者(素材CTR),那么后者(内容后续转化率)自然就高了。

之前实际操作过一次,将后续的内容元素直接添加到了广告素材上(素材和内容保持一致),且用户对内容元素是认知的、是喜欢的,结果CTR提升了30%,后续付费转化提升了将近400%

但在实际工作中,大家经常会为了追求导入高流量(点击率)故意把广告素材做的很诱惑,甚至偏离了实际内容,这将会带来后续转化率降低,以及用户的信任度降低,这是为了追求短期利益导向,不优先推荐。(尽管二哈也做过类似的事情)

好啦,本篇基本也就讲完了,感觉很多地方都没有讲得很细,争取慢慢完善,不足之处请指教啦。

相关阅读

广告系统设计:概述

 

作者:二哈很冷很傲娇,互联网产品狗,码字很慢,性格尚可

来源:https://www.jianshu.com/p/f44722e79d75

本文由 @二哈很冷很傲娇 原创发布。未经许可,禁止转载。

题图来自PEXELS,基于CC0协议

新一代大数据用户行为分析与数据智能平台:数极客(https://www.shujike.com),是支持无埋点、前端埋点、后端埋点、API导入四种混合数据采集方式,整合分析用户行为数据和业务数据,可以自动监测网站、APP、小程序等多种渠道推广效果分析,是增长黑客们必备的互联网数据分析软件。数极客支持实时多维分析、漏斗分析、留存分析、路径分析等十大数据分析方法以及APP数据分析网站统计网站分析小程序数据统计用户画像等应用场景,业内首创了六种提升转化率的数据分析模型,是数据分析软件领域首款应用定量分析与定性分析方法的数据分析产品

发表评论

相关文章