数据的作用主要体现在两方面:解释过去和预测未来。本篇文章介绍如何通过数据解释过去发生的事情。包括过去发生了什么事情?这些事情有什么样的规律?驱动因素是什么?是否有明显的改进或提升?等等。在开始之前我们先来介绍下数据的获取来源以及数据的特点和分类。

通过数据解释过去

我们以网站的数据为例,网站的数据来自于服务确日志和网站分析工具。下面是来自网站分析工具Google Analytics的一条日志信息。在这条日志中包含了一些用户及网站的信息。Google通过对这些信息的处理产生数据,并最终生成我们所看到的网站数据报告。

通过数据解释过去
通过数据解释过去

类别型变量

通过数据解释过去
通过数据解释过去

单因素分析

这里再啰嗦两句,很多时候我们面对数据无法获得有用的结果或洞察,原因不是因为缺少数据,而是因为数据太多。这里我们将信息进行拆分,每次只针对一类信息进行介绍,发现其中的规律及驱动因素。避免迷失在大量无用的数据中。

前面我们说过,Google Analytics日志收集到的信息分为两类,类别变量和数值变量。下面我们分别来看下这两类信息的分析方法。

类别变量

类别变量指日志中以文本或布尔值的形式记录的信息。这类信息本身不是数据,不能直接进行运算。需要进行处理后才能转化为我们常见的数据形式。例如下面的浏览器信息。每个用户都会使用不同品类的浏览器。当用户访问网站时我们以文本形式记录下了这些浏览器的品牌信息。这类信息就属于类别变量。下面是一组浏览器的品牌信息列表。

通过数据解释过去
通过数据解释过去
通过数据解释过去

数值变量是指日志中以数值形式记录的信息。这些信息可以直接作为数据,或者通过相互间的运算生成新的数据。例如下面的浏览深度是通过到访网站次数和浏览页面总次数计算获得的。

通过数据解释过去
通过数据解释过去
通过数据解释过去

在前面的单因素分析中,我们分别介绍了类别变量和数值变量的分析方法,下面我们介绍双变量的分析方法。双变量分析简单来说就是单因素的组合。我们把双变量分为三类,分别为类别变量&类别变量,数值变量&数值变量和类别变量&数值变量。分析两个变量间的关联和差异。

类别变量&类别变量

第一个双变量是类别变量&类别变量。下面是一组客户来源和是否成交情况的列表。记录了每个客户的来源以及最终是否成交的情况。其中客户来源分为线上和线下两个来源,是否成交中已成交的记录为”是”,未成交的记录为”否”。对这组数据我们使用卡方检验来分析线上与线下来源在成交率上是否有显著差异。

通过数据解释过去
通过数据解释过去
通过数据解释过去
通过数据解释过去

第二个双变量是数值变量&数值变量,下面是一组广告消费和点击量的数据。记录了在广告平台上的消费情况和获得的点击量数据。对于这组数据我们通过关联分析来分析消费和点击量之间的关联。

通过数据解释过去
通过数据解释过去
通过数据解释过去

第三个双变量是类别变量&数值变量,下面是一组每日访问量数据,分别对应了每一天网站获得的访问量数据。其中日期是类别变量,访问量是数值变量。我们在前15天和后15天分别使用了不同的推广策略。下面将分别使用Z建议和T检验分析访问量数据前后变化差异的显著性。

通过数据解释过去
通过数据解释过去
通过数据解释过去
通过数据解释过去
通过数据解释过去

发表评论

评论已关闭。

相关文章