数极客首页

小白学数据分析:留存率是什么?

最近一个时期和很多的人进行了交流,收获了不少,也思考了不少,如今我们都能得到数据,如今我们也都能按照所谓的定义和框架分析问题,只是我觉得有时候不必要一定要一直站在框架内去分析一些问题,进步和前进的力量来自于质疑,并进行革新和再创造。留存率这个数据指标不记得从何时起变得那么重要,重要到研发上把它作为游戏好坏的一个标准,运营商(平台)作为了一个准入的钥匙,是否值得继续下去。有时候觉得粗暴,甚至无知了有点。因为肤浅的百分比背后隐藏着更多的金子,也可能是垃圾。以上算是一点吐槽,更多潜在的问题这里不想累述,前几日写过一个关于的留存率是什么的文章,我想肯定很多人看过了,估计也都会用了,今天写的番外篇将从这个数据的统计源头说起,换个角度来看待这个留存率的问题。

留存率VS百分比

百分比是用于表达比例的,类似于一种标准化的表达,因为百分比的分母是100,换个较多想想这种表达消除了数量级上的差异,使不同数量级之间的数据可以进行比较,比如:这里我们看到尽管上周和本周的收入数据相差了一个数据量级,但是在百分比上的表现只是差了10个百分点,能够更好的进行量化数据,这个意义上,是非常有用的,然而这里如果只是对比本周的强化收入环比上周少了10个百分点就断言本周的强化道具卖的不好,那我们就错了。那么下面我们再来审视这张图:这张图我们发现的规律其实和上一张是一致的,如果我们只是在单纯的考察留存率,遇到的分析麻烦就是错误的相信了百分比,但是这里不能忽略百分比的作用。因此考察留存不是单纯的就在看留存率,你还要看到DAU,其后的留存,DNU规模等等信息。之所以要跟这个百分比较劲的原因其实很简单,你不能看到今天的DAU比昨天的DAU多了一倍,就说今天的DAU好于昨日,玩家更加积极(探寻有价值的DAU)。

留存率VS漏斗

大概我们现在在做留存分析都会用漏斗模型,因为一批用户进入游戏后,随着时间上是不断递减的,从玩家的游戏生命进程的确是这样的,然而这里面却存在了一个问题,这个漏斗不一定是个严格意义的漏斗。再来看上面的那张图,你会发现2日的留存率高于次日飞留存率,这里这种情况是存在的,实际的数据中也是存在的,至于原因后面会具体的来讲述。

留存率VS目的

我觉得用到留存率的目的是探寻一批用户的导入质量情况(包括游戏前期的成长等),或者是市场、渠道的质量研究,进而方便我们后期的调整投放策略,游戏改进方案。大概因此我们建立了留存率,作为一种转化率机制,来确定和为我们之前的目的服务。留存率是研究固定群体的转化情况,换句话我们是希望看到这个群体自然的变化情况,由于存在统计上时间滞后性,往往不小心就会带来错误。比如8月1日的次日留存在8月2日统计出来,3日留存在8月4日统计出来,7日留存在8月8日统计出来,但是如果我们够认真就会出现以下飞乌龙,比如8月2日统计的8月1日留存会错误的认为是8月2日的次日留存率。出现这个问题的原因就是统计日展现的数据不是统计日的,这点很多人在使用一些系统都会出现这样的问题。其实费了不少话,最终要说的就是在下面这张图上:此图中,我们列出来了每日新登玩家的次日、3日、7日的留存率,我们会发现每个固定的群体(每日新登作为一个独立的群体)次日、3日、7日的留存表现趋势基本上是相同的,也就是说,留存率的指标能够揭示一个群体在一段时间内的变化特征,且这种特征不会因为时间的变化而发生显著性改变。比如第37日的新登用户的次日、3日、7日留存表现都是保持一个趋势,这从某个角度来说,新玩家的期待或者特征我们游戏给予了最好的反馈,而这样的期待或者特征就是我们留存率使用起来的价值。(此处另外一种方式可以计算相邻两日留存率变化百分比,绘制曲线去分析这种趋势变化)后记:有关于留存的分析,留存率只是整体留存分析的很少一部分,真正挖掘留存的价值其实还要做很多工作,留存分析也不只是新用户的专利,比如充值用户的留存,这里没办法展开说。而一些留存率分析方法其实很多,这取决于我们分析的维度和角度,也许有时候你可以尝试一下做一个显著性分析,看看两个服务器的一段时间的留存变化是否显著,也许你也可以针对同时间的两个服务器的用户做分析,或者是不同渠道或者市场的用户分析,维度方式很多了,关键在于是否愿意去做。其次,我一段时间以来一直使用几何平均数去处理这种“率”的概念,因为我们总要计算平均留存率,但是算数平均数不能屏蔽极端值的干扰,所以几何平均数是个很好的办法。最后刚才提到一个关于漏斗的问题,这里我想把我的理解说一些,漏斗是作为一种分析转化率的形象化描述,但是在狭义的漏斗分析观念上(比如网站分析),我们的漏斗分析是针对一个session(一个会话期间)进行的转化率分析。然而我们这里的漏斗分析其实是一种广义上的转化率漏斗分析模式,即新登用户在次日登录了,那么在2日,3日,4日都可以登录,这里面不存在会话的,而狭义的漏斗是一个不断筛选的过程。因此这里的留存率是存在我们看到的3日大于次日的情况(这点在最后一部分中已经做了解释和说明)推荐使用国内新一代大数据用户行为分析平台:数极客,新一代支持无埋点、前端埋点、后端埋点、API导入四种混合数据采集方式;自动监测网站、APP、小程序等多种渠道推广效果分析,是增长黑客必备的互联网数据分析工具。数极客支持实时多维分析、漏斗分析、留存分析、路径分析等十大数据分析方法以及APP数据分析网站统计网站分析小程序数据统计用户画像等应用场景,国内首创6大提升转化率的数据分析模型,是用户行为分析领域首款应用定量分析与定性分析方法的数据分析产品

。基于用户行为的大数据分析智能系统,提供了会员营销AB测试两大数据智能产品,使得企业可以快速的提升用户转化率和留存率,实现数据驱动增长。

作者:小白学数据链接:http://www.gameres.com/msg_195421.html

 

发表评论

评论已关闭。

相关文章