数极客首页

以Google Analytics为例,盘点BI产品四大要素

数极客,拥有16种数据分析模型的新一代用户行为分析平台!

对一款成熟、完善的BI产品来说,什么是它构建的四大要素呢?在这些要素的规划实现中,我们又要注意哪些点呢?针对这些问题,本文将展开详细的介绍。

以Google Analytics为例,盘点BI产品四大要素

本文以Google Analytics为例,分析了BI产品构建的四个要素,希望能对你有所帮助。

  • BI产品提供的是一种解决方案
  • 可拓展的报表展示
  • 分析能力
  • 可视化能力

01 BI产品提供的是一种解决方案

在开始本小结的介绍之前,我先简单介绍一下Google Analytics这款产品。

官方对它的介绍是:

Google Analytics是著名互联网公司Google为网站提供的数据统计服务。可以对目标网站进行访问数据统计和分析,并提供多种参数供网站拥有者使用。

简单来说,Google Analytics提供的最核心的能力就是数据统计,在此基础上扩展了数据预测、智能检测等分析能力。

打开Google Analytics的官网(https://www.google.com/analytics/),你会发现Google Analytics是一套完整的数据解决方案。从产品初期数据采集到数据处理、查询以及产品上线后的广告分析、A/B test,甚至还提供了一套标准的代码管理器。Google Analytics基本覆盖了一个产品前中期的整条数据链路。

这也是我本节要说的,BI提供的应该是完整的数据解决方案,Google Analytics很好的做到了这一点。

当然要做到这一点也并不简单,回首看一下Google Analytics的发展历史:

从2005年GA分析上线,直到2016年,其不断丰富产品线,才形成了Google Analytics Solutions,在2018年,官方将GA Solution升级为Google Marketing Platform,整合了DoubleClick广告技术,帮助企业购买和追踪广告的有效性,实现更强的联动合作。

简单介绍一下Google Marketing Platform主要的几款产品:

  • GA:负责网站数据收集并通过GA提供的API等组件完成网站数据报告的输出。(本文主要介绍这款产品,其他产品请关注作者的其他文章)
  • Optimize:a/b测试工具,可以使用它来进行网站体验优化。
  • 跟踪代码管理器:对网站和应用的数据相关代码进行管理及更新。
  • Data Studio:可以将Google Analytics产品生成的数据输出成易于分享与查看的可视化面板及分析报告。
  • Attribution 360:以跨渠道、设备的归因为模型,针对广告展示、点击转化等的分析工具。
  • Audience Center 360:网站、应用的受众管理平台,可以合并受众与用户数据建立新的受众群体,将这些受众发布到营销平台,并检测其效果。
  • Surveys 360:用户问卷调查工具。

02 可拓展的报表展示

如何让数据能够快速、准确的提供给业务用户是BI产品要解决的首要问题,说白了用户使用BI产品最主要的目的就是查询数据。

我们来看一下GA是如何解决这个问题的,首先我们看一下GA整体的数据处理流程:

以Google Analytics为例,盘点BI产品四大要素

可以看到GA数据处理流程整体可以分为三个部分:数据采集、配置&数据处理、数据报告。这三个步骤的处理让整个数据处理流程做到了规范化、自动化。这也是目前BI产品处理数据一般的流程,下面我们简单对三个部分进行说明:

1. 数据采集

GA提供了一些标准的JS组件及SDK,这使得网站、应用的基础数据收集变的简单,只需接入JS库或者SDK即可自动收集网站的用户行为及受众特征。

为了在接下来的流程中能够顺利处理收集到的数据,GA提供了开放的Measurement Protocol,及数据测量协议,它定义了一套标准的数据参数规则,并支持针对收集到的数据进行参数验证,保证了收集到的数据是符合数据规范的。

千万别小看这一步,数据收集的自动化和规范化为后续的数据处理打下了坚实的基础,依赖这一套标准的规范,BI产品实现高度组件化才变得切实可行。

2. 数据处理

采集到一条条标准化的数据日志,数据处理便变得简单了。

通过几层数据处理,根据数据的属性及分类,GA生产了一些可供用具使用的数据应用视图如:实时数据视图、基础数据视图、用户受众视图等,依赖GA工具本身强大的细分分析能力,用户可以对数据视图进行组合、过滤等操作,完成数据报告的生产。

3. 数据报告

基于生成的数据视图,GA提供了一套标准的数据报告API,通过对接这些API,可以将数据视图与GA连接,并生成一套自动化的标准数据报告,简单介绍一下这几个API:

  • Reporting API:支持请求多个维度的数据,支持请求指标,含指标的数学表达式组合,并支持生成用户生命周期报告
  • Realtime API:通过此API可创建并显示实时用户数据,实时获取网站、应用的最热门内容
  • Multi-channel API:通过此API可获取多渠道的数据
  • Embed API:通过此API可将创建的数据视图内嵌至第三方系统
  • Metadata API:基础数据API可访问所有维度和指标,并支持自动发现新的指标及维度

4. 配置

了解了GA数据处理的三个流程,我们可以看到GA通过一些Open API可以让业务快速接入数据并生成标准数据视图,基于这些标准数据视图,GA数据配置的组件化就顺利成章了。
配置方面,GA也提供了两个标准的API,Management API以及Provisioning API:

  • Management API:通过此API可对数据视图进行管理,包括进行数据过滤、数据关联等操作。另外还支持对用户的账号及权限进行管理
  • Provisioning API:与Management API不同的是,Provisioning API的可控制范围相对小一些,这个API主要用于控制用户创建的账号或者第三方合作伙伴的账号。

03 分析能力

BI产品提供的分析能力,我们主要分为两个部分:用户自助分析的能力、系统提供的智能分析能力。

1. 自助分析能力

通过程序化接入应用或网站后,GA自动生成了一些基础报告,这些报告包括实时流量报表、受众特征报告、流量获取报告、转化报告…同时,用户也可以自助进行数据视图的处理以及自助完成自定报告创建、漏斗分析、用户路径分析等操作。

  • 数据视图管理:前面我们已经有介绍到GA提供了标准的配置API,对接API后,可以在GA后台进行数据视图的管理,你可以对数据视图进行过滤也可以自定一些计算指标,方便你输出更加精细化的报告
  • 创建自定义报告:有了标准的数据视图,在创建自定义报告时只需对指标和维度进行选择、筛选即可生成报告,生成的报告也可根据不同的维度进行细分

2. 智能分析能力

除了用户自助分析能力外,GA还提供了一系列的智能分析能力:

  • 智能异常检测:GA将贝叶斯状态时空序列模型应用于历史数据,使用90天的历史数据训练预测模型,以预测时间序列中最新观察到的数据点的值。该功能可以为用户提供数据诊断报告,集中分析异常数据
  • 预测:一是预测能够最大限度提高转化次数的受众群体,将机器学习应用于转化数据,以确定哪些用户最有可能在后续会话中进行转化。二是预测能够最大限度提高转化次数的操作,使用机器学习检查网站会话的的一些特征,确定最佳会话,配合Google Ads可实现CPA自动出价

04 可视化能力

在提供数据的基础上,如何让数据的有效信息更加快速直接的传递给业务也是BI产品的一个重要能力。

这里我们抽几个比较典型的可视化案例简单进行简单介绍,关于数据可视化更多的介绍请持续关注作者的其他文章。

1. 折线图

下图的折线图有两个优点:

  1. 结合了数字卡与趋势图的显示方式,可以一眼观察到几个数据的真实值,而且解决了不同量级的数据放置在同一个趋势图中的问题,可以切换card的交互,为数据可视化界面节省了很多空间。
  2. 使用虚线显示了上周同比的趋势,更方便用户观察到异常数据并做出反应。
以Google Analytics为例,盘点BI产品四大要素

2. 堆积柱状图

各维度数据量使用不同的颜色深浅显示,堆积部分自动按照颜色深浅排序。这样做更方便对两个维度的数据进行横向以及纵向的对比。

以Google Analytics为例,盘点BI产品四大要素

3. 地图

地图+水平条形图的展现形式,地图中使用颜色深浅标识指标数据量的大小,柱状图按照指标数据量排序。单一的数据地图难以对各个地区数据量有直观感受,地图+水平条形图的组合让用户有了更直观的感受。

以Google Analytics为例,盘点BI产品四大要素

4. 频次分布图

使用日期作为横坐标、每个日期的多个时间段作为纵坐标建立时间分布坐标轴,将每个日期的每个时间段表示为一个矩形模块,每个矩形模块颜色的深浅标识该时间段的数据量大小。使用频次分布情况一眼即可观察到

以Google Analytics为例,盘点BI产品四大要素

 

本文由 @罗可靠。 原创发布,未经作者许可,禁止转载。

题图来自Unsplash,基于CC0协议

数极客是新一代用户行为分析与数据智能平台,支持用户数据分析运营数据分析留存分析路径分析漏斗分析用户画像SEM数据分析等16种分析模型的数据分析产品,支持网站统计网站分析APP统计APP分析等分析工具,以及会员营销系统A/B测试工具等数据智能应用,支持SAAS和私有化部署,提升用户留存和转化率,实现数据驱动增长!

发表评论

相关文章