数极客首页

两个案例,聊聊产品经理如何设计数据分析方案

两个案例:厕纸使用情况摸底和销售分析;4个步骤:确定大小维度、分析指标,然后添删改查;简单聊聊如何设计数据分析

两个案例,聊聊产品经理如何设计数据分析方案

最近工作中,做了一些数据分析相关的工作,结合几次经验说说作为一个low逼的产品经理,怎样设计数据分析方案。

一、数据分析的用途

目前,我能想到的用途有:摸底调研,产品优化。换句话说就是了解过去,放眼未来。

二 、设计数据分析方案的方法

在明确数据分析目的的前提下,我会按照『四步走』的思路设计数据分析的方案。即确定三大维度、大维度拆解成小维度,小维度的分析指标,添删改查。

两个案例,聊聊产品经理如何设计数据分析方案
  • 确定三大维度:任何数据分析问题我都会先拆解成三个大维度:物,人,物+人,拿资讯流来说,物就是资讯,人就是分析对象(用户/作者等),物+人就是资讯和对象之间发生的交互。
  • 大维度拆解成小维度:结合目标,分别从物,人,物+人的角度去看,你想了解哪些情况。还说资讯流,物的角度比如:资讯的质量分布,时效性分布,来源评估等,人的角度比如有:有多少用户,用户的活跃情况,用户的统计特性分布,用户什么时候来(来不是看,来了不一定看,看即点击,是和资讯发生了交互)等;物加人的角度比如:不同类别的用户爱看什么类别的资讯,用户在某类资讯下的转化和核心数据表现等。
  • 小维度的分析指标:要想得到这个维度下的结论,你需要看哪些统计指标;
  • 添删改查:根据你的目标,结合实际资源,对上述的维度和指标进行筛选,修改,补充。

三、举例说明

举例1:

对公司厕所的使用情况进行摸底

1.确定三个大维度:马桶,职员(还有清洁工,维修工和访客,主要使用的是职员),马桶+职员

2. 大维度拆解成小维度:

  • 马桶:马桶的数量及楼层分布;马桶的使用寿命分布;马桶常见故障问题。
  • 职员:职员的统计特征。
  • 马桶+职员:职员每天使用马桶的流量分布;员工单次使用马桶的时间分布。

3. 小维度的指标:

  • 马桶的数量及其分布:楼层、男马桶数量、女马桶数量;马桶使用寿命分布:马桶使用寿命,楼层,男马桶数量、女马桶数量;马桶常见故障分布:故障原因,男马桶故障次数,女马桶故障次数。
  • 职员的统计特征:职员id,职员年龄,职员性别,职员平均在公司时间(工作日);
  • 职员每天使用马桶的流量分布:日期,时间段(每隔15min?),男马桶使用个数,女马桶使用个数;员工单次使用马桶的时间分布:职员id,职员年龄,职员性别,日期,职员单次使用时间,使用时间长度。

4. 添删改查

针对上述的分析,对数据进行一些修正,例如,上述的分析中男马桶和女马桶的类型是不一样的(捂脸,别问我怎么知道),是否有必要进行细化。还有上述只给出了统计指标,但并没有给出统计方法和统计时间等。

举例2:

我在小区门口开了个小卖部,想分析一下近一个月内各商品的销售情况,以决定明天的进货量(假设我每个月进一次货)。

1.确定三个大维度:这里也就是商品,顾客,商品+顾客。

2.大维度拆解成小维度

A.商品:

  • 一个月内商品的周转情况(进了多少货,卖出了多少);
  • 一个月内,不同商品的盈利情况;
  • 此外,我还想从局部看下每天的盈利分布是怎样的。(总体+局部)

B.顾客:

  • 顾客的人口统计特征分布(顾客都是些什么人);
  • 单顾客创造的营业额、利润分布(顾客花多少钱,我能赚多少);
  • 单天客流量及访问时间段的分布(大家都什么时候来);

C.商品+顾客:

  • 不同属性的用户,购买每类产品(零食,生鲜,日用品等)的转化,购买数量及分布(不同类别的人都最爱买什么);
  • 不同(统计特征)属性的用户,不同商品类别带来的营业额、利润及其分布(不同类别的人都爱买什么,哪类人可以给我带来最高利润);
  • 利润最高的用户,不同类别下购买时段的分布(利润最高的用户,都是什么时候来买东西)。
  • 利润最高的用户,购买商品的分布(利润最高的用户,都爱买什么)。

3. 小维度的指标

A.商品:

  • a&b的统计指标:商品ID,商品名称,商品单价,商品大小(特大/大/中/小四档),总进货量,总销售量,总营业额,总成本,总净利润;统计时间:近一个月,按月统计。
  • c的统计指标:商品ID,商品名(筛选后),日期,销售量,营业额,净利润;统计时间:近一个月,按天统计。

B.顾客:

  • a&b的统计指标:顾客ID,性别,年龄,身份,月访问次数,月购买次数,月营业额,月利润;统计时间,近一个月,按月统计。
  • c的统计指标:顾客ID,日期,访问时间段,访问次数;统计时间,近一周,按天统计。

C.顾客&商品:

  • a&b的统计指标:用户属性类别,商品类别,月访问次数,月购买数量,月营业额,月利润;统计时间:近一个月,按月统计。
  • c的统计指标:用户属性类别,商品类别,日期,购买时间段,购买次数;统计时间,近一周,按天统计。
  • d的统计指标:用户属性类别,商品类别,商品名称,购买次数。统计时间,近一个月,按月统计。

4. 添删改查

根据实际需求,投入产出比,优先级等,对上述的维度进行筛选和修改;

根据业务需求,对上述维度进行补充。

例如:上述分析第三部分主要分析了高利润用户的特性和习惯,但对未购买的用户,购买次数多但利润不高的用户分析较少。更好地满足高利润用户的需求,转化低(无)贡献的用户是两种不同的思路。

总结

上述数据如果能够结合模型和机器学习等智能分析手段,可以分析出更多更有价值的内容。

例如不同商品间的关联性(喜欢买A,B的人,都会喜欢买C),如不同类别用户之间的特性,大量购买XXX保健品的用户,一个月后都会大量购买婴儿产品(XXX保健品为孕期的常用保健品),如时间和气候对商品的影响,XXX季节,XXXX天气下,XXX和XXX商品的销量会激增。

 

题图来自 Pexels ,基于 CC0 协议

本文由 @nangelC 原创发布于人人都是产品经理。未经许可,禁止转载

推荐使用国内新一代大数据用户行为分析平台:数极客,国内首款支持无埋点、前端埋点、后端埋点、API导入四种混合数据采集方式;自动监测网站、APP、小程序等多种渠道推广效果分析,是增长黑客必备的互联网数据分析工具。数极客支持实时多维分析、漏斗分析、留存分析、路径分析等十大数据分析方法以及APP数据分析网站统计网站分析小程序数据统计用户画像等应用场景,国内首创6大提升转化率的数据分析模型,是用户行为分析领域首款应用定量分析与定性分析方法的数据分析产品

发表评论

评论已关闭。

相关文章