数极客首页

指标不对,数据有何用?两个方法助你选对UX用户体验设计指标

本篇文章为大家详细地介绍了HEART框架和“目标-信号-指标”三步法。

指标不对,数据有何用?两个方法助你选对UX用户体验设计指标

网站设计中,数据经常派上用场。比如,在a/b测试中,通过分析产品使用数据,你可以比较不同的网页设计方案。有时,人们称之为“数据驱动设计”(data-driven design)。但是,我更倾向于称之为“以数据为依据的设计”(data-informed design)——真正驱动设计的,是设计师,而不是数据

想让数据发挥作用,选对指标很重要。基本的流量指标(浏览量、访客数)易于追踪,可以提供网站表现的基本信息。但是,在衡量UX改动的影响时,它们的作用有限,因为它们过于宽泛,无法直接衡量用户体验质量、产品目标实现程度,实操性低。我是谷歌UX量化研究团队的一员。大规模的数据分析,是谷歌UX研究方法之一。

为了选对UX指标,我们总结出了以下方法:

  • HEART框架(衡量用户体验质量)
  • “目标-信号-指标”三步法(衡量产品/项目目标实现程度)

一、HEART框架

在谷歌,我们把UX指标分为五大类:

1. 愉悦度(Happiness)

衡量用户态度,数据通常来源于用户调查。例如:用户满意度、感知易用性(perceived ease of use)、净推荐值(NPS)。

2. 参与度(Engagement)

衡量用户参与度,数据一般来源于用户行为指标,比如:某一时间段内,交互的频率、强度、深度。例如:每周人均访问次数、每日人均上传图片数。

3. 接受度(Adoption)

某一产品/功能有多少新用户?例如:过去一周新注册用户数,谷歌邮箱用户中使用“标签”功能的比例。

4. 留存率(Retention)

衡量用户继续使用产品的频率,例如:某段时间内的活跃用户,之后是否继续使用产品?留存失败的情况更受关注,也就是所谓的“用户流失率”(churn)。

5. 任务完成率(Task success)

包括常见的用户行为指标,比如:效率(用户完成任务的时间)、效果(完成任务的用户比例)、错误率。适用于产品中与“任务”相关的部分,例如:搜索、上传。无论是整体的产品设计,还是局部的功能设计,HEART框架都有用武之地。例如,在谷歌邮箱的设计中,我们既关注整个产品的接受度,也关注关键功能(标签、邮件归档)的接受度。

一个常见的问题是:“访客数已经摆在那里了,为什么还要多此一举,去衡量接受度和留存率呢?”访客数(比如:7天活跃用户数)当然是一个很重要的指标。

但是,有了有关接受度和留存率的数据,就可以把新用户和老用户区分开来,快速判断用户群体是否增长。无论是设计新产品、新功能,还是重新设计产品,这些指标都十分有用。

在选择指标时,并不需要面面俱到。根据项目需要,选择最重要的指标,就足够了(具体内容见“目标-信号-指标”三步法)。你可以根据HEART框架,从五类指标中,选出重点关注的类别。

例如,对于一款为企业打造的产品,“参与度”指标不重要(员工出于工作需要,都会参与),“愉悦度”、“任务完成率”指标反而更重要。但是,对于一些局部的功能,“参与度”指标也值得关注。

在谷歌,HEART框架被广泛使用。围绕HEART框架展开讨论,不容易跑题。HEART由五个首字母组成,十分好记。日常工作中,只要在白板上写下五大分类,就能快速展开讨论。

二、“目标-信号-指标”三步法

如何根据HEART框架,选出可落实的指标呢?这就要靠你的判断力了,机器也帮不上忙。根据产品、项目实际情况选择的指标,才是最实用的。

1. 目标(Goals)

要弄清楚这些是什么,你需要从更高的层次开始:确定你的目标,以便你可以选择有助于衡量实现这些目标的进度的指标。许多人很容易陷入“头脑风暴”的陷阱,一开始就列出一长串指标,把自己搞糊涂了,怎么也抓不住重点。

能让团队为之奋斗的关键指标,数量上不会多。只有从更高的层次思考,才有可能找到这些指标。具体而言,就是先定目标,再定指标。有了目标,你才会知道,如何衡量与目标的差距。

但是,项目的目标往往难以明确。这时,HEART框架就可以派上用场,对目标进行归类。例如,YouTube的重点目标之一,和“参与度”指标相关:“我们希望用户能在YouTube看到喜欢的视频,找到更多想看的新视频、新频道”。

产品局部和整体的目标可能不一致。例如,YouTube搜索功能的关键目标,和“任务完成率”指标相关:“我们希望用户能够快速、轻松地找到最相关的视频或频道”。

一个常见的错误是:把指标和目标混为一谈。如果你说:“好吧,我们的目标是增加网站流量。”没错,团队的每个人都希望达成这一目标。但是,改进用户体验,也有助于增加流量呀。另外,是提高现有用户的活跃度,还是吸引新用户呢?

对于项目目标,团队中很容易产生分歧。所以,先定目标,有助于摆平争议,建立共识。

2. 信号(Signals)

接着,找到与目标对应的信号。也就是说,如果目标实现了,用户行为、态度会有什么转变?例如,对于YouTube来说,参与度提高,视频播放量就会提高。其实,还有一个更相关的“信号”:用户看视频的时间增加了。如果用户使用YouTube搜索,却没有播放搜索结果中的视频,那么,和“任务完成率”有关的目标就没有实现。

通常,一个目标对应多个信号。唯有仔细推敲,才能选出最合适的。

首先,这个信号容易追踪吗?产品能否自动记录用户操作?如果不可以,定期开展产品使用调查,可行吗?如果是“任务完成率”指标,还有另一个选项:在可用性标杆研究中,推出新的任务模式,开展大规模的用户实验。

其次,信号应该足够“敏感”,随着设计的改变而改变。你可以搜集相关数据,做敏感性分析,找到最能预测目标的信号。

3. 指标(Metrics)

最后一步:根据信号确定指标。指标的作用非同小可:要么作为长期的信息来源,要么用于A/B测试中,衡量设计方案的优劣。以YouTube为例,根据“用户观看时长”这一信号,我们选择“每日人均观看时长”为指标,以分钟为单位。

具体指标的选择,取决于实际情况。但是,一个信号也可能对应多个指标。你也需要通过分析数据,选择最合适的指标。原始数据可能需要标准化,才能更有意义,例如:求平均值,转化成百分比。

完成“目标-信号-指标”这三个步骤之后,不同UX指标的优劣也就显而易见了。最重要的是,追踪与最高目标相关的指标。不要加入无关的“有趣的”数据。在做决定时,你真的会用这些数据吗?你需要不同时间段的数据,还是当前时间点的数据?专注于与目标密切相关的指标,避免做无用功和数据混乱。

以下表格有助于你完成以上三个步骤。你不需要填满所有的空格,因为HEART框架中的某些类别,和项目目标无关。当然,你也可以添加HEART之外的类别。

指标不对,数据有何用?两个方法助你选对UX用户体验设计指标

有了反映用户体验质量,和主要目标密切相关的UX指标,在设计中,大规模的数据分析才能真正发挥作用。本文介绍的HEART框架和“目标-信号-指标”三步法,有助于你选对UX指标。或者你有其他方法或建议,欢迎和我们分享!

 

原作者:Kerry Rodden,数据可视化咨询顾问,谷歌、YouTube前员工

原文链接:https://library.gv.com/how-to-choose-the-right-ux-metrics-for-your-product-5f46359ab5be

翻译:『即能』团队,公众号:『即能学习』

本文由 @即能 翻译发布,未经许可,禁止转载。

题图来自 Unsplash,基于 CC0 协议。

新一代大数据用户行为分析与数据智能平台:数极客(https://www.shujike.com),是支持无埋点、前端埋点、后端埋点、API导入四种混合数据采集方式,整合分析用户行为数据和业务数据,可以自动监测网站、APP、小程序等多种渠道推广效果分析,是增长黑客们必备的互联网数据分析软件。数极客支持实时多维分析、漏斗分析、留存分析、路径分析等十大数据分析方法以及APP数据分析网站统计网站分析小程序数据统计用户画像等应用场景,业内首创了六种提升转化率的数据分析模型,是数据分析软件领域首款应用定量分析与定性分析方法的数据分析产品

发表评论

评论已关闭。

相关文章